
7

Probabilistic algorithms

It is sometimes useful to endow our algorithms with the ability to generate
random numbers. To simplify matters, we only consider algorithms that
generate random bits. Where such random bits actually come from will not
be of great concern to us here. In a practical implementation, one would
use a pseudo-random bit generator, which should produce bits that “for
all practical purposes” are “as good as random.” While there is a well-
developed theory of pseudo-random bit generation (some of which builds on
the ideas in §6.9), we will not delve into this here. Moreover, the pseudo-
random bit generators used in practice are not based on this general theory,
and are much more ad hoc in design. So, although we will present a rigorous
formal theory of probabilistic algorithms, the application of this theory to
practice is ultimately a bit heuristic.

7.1 Basic definitions

Formally speaking, we will add a new type of instruction to our random
access machine (described in §3.2):

random bit This type of instruction is of the form α← RANDOM, where
α takes the same form as in arithmetic instructions. Execution of
this type of instruction assigns to α a value sampled from the uniform
distribution on {0, 1}, independently from the execution of all other
random-bit instructions.

In describing algorithms at a high level, we shall write “b ←R {0, 1}” to
denote the assignment of a random bit to the variable b, and “s←R {0, 1}×`”
to denote the assignment of a random bit string of length ` to the variable s.

In describing the behavior of such a probabilistic or randomized algo-
rithm A, for any input x, we view its running time and output as random

148

7.1 Basic definitions 149

variables, denoted TA(x) and A(x), respectively. The expected running
time of A on input x is defined as the expected value E[TA(x)] of the ran-
dom variable TA(x). Note that in defining expected running time, we are
not considering the input to be drawn from some probability distribution.
One could, of course, define such a notion; however, it is not always easy to
come up with a distribution on the input space that reasonably models a
particular real-world situation. We do not pursue this issue any more here.

We say that a probabilistic algorithm A runs in expected polynomial
time if there exist constants c, d such that for all n ≥ 0 and all inputs x
of length n, we have E[TA(x)] ≤ nc + d. We say that A runs in strict
polynomial time if there exist constants c, d such that for all n and all
inputs x of length n, A always halts on input x within nc + d, regardless of
its random choices.

Defining the distributions of TA(x) and A(x) is a bit tricky. Things are
quite straightforward if A always halts on input x after a finite number
of steps, regardless of the outcomes of its random choices: in this case,
we can naturally view TA(x) and A(x) as random variables on a uniform
distribution over bit strings of some particular length—such a random bit
string may be used as the source of random bits for the algorithm. However,
if there is no a priori bound on the number of steps, things become more
complicated: think of an algorithm that generates random bits one at a time
until it generates, say, a 1 bit—just as in Example 6.29, we do not attempt
to model this as a probability distribution on the uncountable set of infinite
bit strings, but rather, we directly define an appropriate discrete probability
distribution that models the execution of A on input x.

7.1.1 Defining the probability distribution

A warning to the reader: the remainder of this section is a bit technical,
and you might want to skip ahead to §7.2 on first reading, if you are willing
to trust your intuition regarding probabilistic algorithms.

To motivate our definition, which may at first seem a bit strange, consider
again Example 6.29. We could view the sample space in that example to
be the set of all bit strings consisting of zero or more 0 bits, followed by a
single 1 bit, and to each such bit string σ of this special form, we assign the
probability 2−|σ|, where |σ| denotes the length of σ. The “random experi-
ment” we have in mind is to generate random bits one at a time until one of
these special “halting” strings is generated. In developing the definition of
the probability distribution for a probabilistic algorithm, we simply consider

150 Probabilistic algorithms

more general sets of “halting” strings, determined by the algorithm and its
input.

To simplify matters, we assume that the machine produces a stream of
random bits, one with every instruction executed, and if the instruction
happens to be a random-bit instruction, then this is the bit it uses. For
any bit string σ, we can run A on input x for up to |σ| steps, using σ for
the stream of random bits, and observe the behavior of the algorithm. The
reader may wish to visualize σ as a finite path in an infinite binary tree,
where we start at the root, branching to the left if the next bit in σ is a 0
bit, and branching to the right if the next bit in σ is a 1 bit. In this context,
we call σ an execution path. Some further terminology will be helpful:

• If A halts in at most |σ| steps, then we call σ a complete execution
path;

• if A halts in exactly |σ| steps, then we call σ an exact execution
path;

• if A does not halt in fewer than |σ| steps, then we call σ a partial
execution path.

The sample space S of the probability distribution associated with A on
input x consists of all exact execution paths. Clearly, S is prefix free; that
is, no string in S is a proper prefix of another.

Theorem 7.1. If S is a prefix-free set of bit strings, then
∑

σ∈S 2−|σ| ≤ 1.

Proof. We first claim that the theorem holds for any finite prefix-free set S.
We may assume that S is non-empty, since otherwise, the claim is trivial.
We prove the claim by induction on the sum of the lengths of the elements
of S. The base case is when S contains just the empty string, in which case
the claim is clear. If S contains non-empty strings, let τ be a string in S of
maximal length, and let τ ′ be the prefix of length |τ | − 1 of τ . Now remove
from S all strings which have τ ′ as a prefix (there are either one or two
such strings), and add to S the string τ ′. It is easy to see (verify) that the
resulting set S ′ is also prefix-free, and that∑

σ∈S
2−|σ| ≤

∑
σ∈S′

2−|σ|.

The claim now follows by induction.
For the general case, let σ1, σ2, . . . be a particular enumeration of S, and

consider the partial sums Si =
∑i

j=1 2−|σj | for i = 1, 2, From the above
claim, each of these partial sums is at most 1, from which it follows that
limi→∞ Si ≤ 1. 2

7.1 Basic definitions 151

From the above theorem, if S is the sample space associated with algo-
rithm A on input x, we have

S :=
∑
σ∈S

2−|σ| ≤ 1.

Assume that S = 1. Then we say that A halts with probability 1 on
input x, and we define the distribution DA,x associated with A on input
x to be the distribution on S that assigns the probability 2−|σ| to each bit
string σ ∈ S. We also define TA(x) and A(x) as random variables on the
distribution DA,x in the natural way: for each σ ∈ S, we define TA(x) to be
|σ| and A(x) to be the output produced by A on input x using σ to drive
its execution.

All of the above definitions assumed that A halts with probability 1 on
input x, and indeed, we shall only be interested in algorithms that halt with
probability 1 on all inputs. However, to analyze a given algorithm, we still
have to prove that it halts with probability 1 on all inputs before we can use
these definitions and bring to bear all the tools of discrete probability theory.
To this end, it is helpful to study various finite probability distributions
associated with the execution of A on input x. For every integer k ≥ 0, let
us consider the uniform distribution on bit strings of length k, and for each
j = 0, . . . , k, define H(k)

j to be the event that such a random k-bit string
causes A on input x to halt within j steps.

A couple of observations are in order. First, if S is the set of all exact
execution paths for A on input x, then we have (verify)

P[H(k)
j] =

∑
σ∈S
|σ|≤j

2−|σ|.

From this it follows that for all non-negative integers j, k, k′ with j ≤
min{k, k′}, we have

P[H(k)
j] = P[H(k′)

j].

Defining Hk := P[H(k)
k], it also follows that the sequence {Hk}k≥0 is non-

decreasing and bounded above by 1, and that A halts with probability 1 on
input x if and only if

lim
k→∞

Hk = 1.

A simple necessary condition for halting with probability 1 on a given
input is that for all partial execution paths, there exists some extension that
is a complete execution path. Intuitively, if this does not hold, then with

152 Probabilistic algorithms

some non-zero probability, the algorithm falls into an infinite loop. More
formally, if there exists a partial execution path of length j that cannot be
extended to a complete execution path, then for all k ≥ j we have

Hk ≤ 1− 2−j .

This does not, however, guarantee halting with probability 1. A simple
sufficient condition is the following:

There exists a bound ` (possibly depending on the input) such
that for every partial execution path σ, there exists a complete
execution path that extends σ and whose length at most |σ|+`.

To see why this condition implies that A halts with probability 1, observe
that if A runs for k` steps without halting, then the probability that it does
not halt within (k+1)` steps is at most 1−2−`. More formally, let us define
Hk := 1−Hk, and note that for all k ≥ 0, we have

H(k+1)` = P[H((k+1)`)
(k+1)` | H

((k+1)`)
k`] · P[H((k+1)`)

k`]

≤ (1− 2−`)P[H((k+1)`)
k`]

= (1− 2−`)Hk`,

and hence (by an induction argument on k), we have

Hk` ≤ (1− 2−`)k,

from which it follows that

lim
k→∞

Hk = 1.

It is usually fairly straightforward to verify this property for a particular
algorithm “by inspection.”

Example 7.1. Consider the following algorithm:

repeat
b←R {0, 1}

until b = 1

Since every loop is only a constant number of instructions, and since there
is one chance to terminate with every loop iteration, the algorithm halts with
probability 1. 2

Example 7.2. Consider the following algorithm:

7.1 Basic definitions 153

i← 0
repeat

i← i+ 1
s←R {0, 1}×i

until s = 0×i

For positive integer n, consider the probability pn of executing at least
n loop iterations (each pn is defined using an appropriate finite probability
distribution). We have

pn =
n−1∏
i=1

(1− 2−i) ≥
n−1∏
i=1

e−2−i+1
= e−

Pn−2
i=0 2−i ≥ e−2,

where we have made use of the estimate (iii) in §A1. As pn does not tend
to zero as n → ∞, we may conclude that the algorithm does not halt with
probability 1.

Note that every partial execution path can be extended to a complete
execution path, but the length of the extension is not bounded. 2

The following three exercises develop tools which simplify the analysis of
probabilistic algorithms.

Exercise 7.1. Consider a probabilistic algorithm A that halts with prob-
ability 1 on input x, and consider the probability distribution DA,x on the
set S of exact execution paths. Let τ be a fixed, partial execution path, and
let B ⊆ S be the event that consists of all exact execution paths that extend
τ . Show that P[B] = 2−|τ |.

Exercise 7.2. Consider a probabilistic algorithm A that halts with prob-
ability 1 on input x, and consider the probability distribution DA,x on the
set S of exact execution paths. For a bit string σ and an integer k ≥ 0, let
{σ}k denote the value of σ truncated to the first k bits. Suppose that B ⊆ S
is an event of the form

B = {σ ∈ S : φ({σ}k)}

for some predicate φ and some integer k ≥ 0. Intuitively, this means that
B is completely determined by the first k bits of the execution path. Now
consider the uniform distribution on {0, 1}×k. Let us define an event B′ in
this distribution as follows. For σ ∈ {0, 1}×k, let us run A on input x using
the execution path σ for k steps or until A halts (whichever comes first).
If the number of steps executed was t (where t ≤ k), then we put σ in B′
if and only if φ({σ}t). Show that the probability that the event B occurs

154 Probabilistic algorithms

(with respect to the distribution DA,x) is the same as the probability that
B′ occurs (with respect to the uniform distribution on {0, 1}×k). Hint: use
Exercise 7.1.

The above exercise is very useful in simplifying the analysis of probabilistic
algorithms. One can typically reduce the analysis of some event of interest
into the analysis of a collection of events, each of which is determined by
the first k bits of the execution path for some fixed k. The probability of an
event that is determined by the first k bits of the execution path may then
be calculated by analyzing the behavior of the algorithm on a random k-bit
execution path.

Exercise 7.3. Suppose algorithm A calls algorithm B as a subroutine. In
the probability distribution DA,x, consider a particular partial execution
path τ that drives A to a point where A invokes algorithm B with a partic-
ular input y (determined by x and τ). Consider the conditional probability
distribution given that τ is a prefix of A’s actual execution path. We can
define a random variable X on this conditional distribution whose value is
the subpath traced out by the invocation of subroutine B. Show that the
distribution of X is the same as DB,y. Hint: use Exercise 7.1.

The above exercise is also very useful in simplifying the analysis of prob-
abilistic algorithms, in that it allows us to analyze a subroutine in isolation,
and use the results in the analysis of an algorithm that calls that subroutine.

Exercise 7.4. Let A be a probabilistic algorithm, and for an input x and
integer k ≥ 0, consider the experiment in which we choose a random exe-
cution path of length k, and run A on input x for up to k steps using the
selected execution path. If A halts within k steps, we define Ak(x) to be
the output produced by A, and TAk

(x) to be the actual number of steps
executed by A; otherwise, we define Ak(x) to be the distinguished value
“⊥” and TAk

(x) to be k.

(a) Show that if A halts with probability 1 on input x, then for all possible
outputs y,

P[A(x) = y] = lim
k→∞

P[Ak(x) = y].

(b) Show that if A halts with probability 1 on input x, then

E[TA(x)] = lim
k→∞

E[TAk
(x)].

Exercise 7.5. One can generalize the notion of a discrete, probabilistic
process, as follows. Let Γ be a finite or countably infinite set. Let f be a

7.2 Approximation of functions 155

function mapping sequences of one or more elements of Γ to [0, 1], such that
the following property holds:

for all finite sequences (γ1, . . . , γi−1), where i ≥ 1,
f(γ1, . . . , γi−1, γ) is non-zero for at most a finite number of
γ ∈ Γ, and ∑

γ∈Γ

f(γ1, . . . , γi−1, γ) = 1.

Now consider any prefix-free set S of finite sequences of elements of Γ. For
σ = (γ1, . . . , γn) ∈ S, define

P[σ] :=
n∏

i=1

f(γ1, . . . , γi).

Show that
∑

σ∈S P[σ] ≤ 1, and hence we may define a probability distribu-
tion on S using the probability function P[·] if this sum is 1. The intuition
is that we are modeling a process in which we start out in the “empty” con-
figuration; at each step, if we are in configuration (γ1, . . . , γi−1), we halt if
this is a “halting” configuration, that is, an element of S, and otherwise, we
move to configuration (γ1, . . . , γi−1, γ) with probability f(γ1, . . . , γi−1, γ).

7.2 Approximation of functions

Suppose f is a function mapping bit strings to bit strings. We may have
an algorithm A that approximately computes f in the following sense:
there exists a constant ε, with 0 ≤ ε < 1/2, such that for all inputs x,
P[A(x) = f(x)] ≥ 1− ε. The value ε is a bound on the error probability,
which is defined as P[A(x) 6= f(x)].

7.2.1 Reducing the error probability

There is a standard “trick” by which one can make the error probability very
small; namely, run A on input x some number, say t, times, and take the
majority output as the answer. Using the Chernoff bound (Theorem 6.13),
the error probability for the iterated version of A is bounded by exp[−(1/2−
ε)2t/2], and so the error probability decreases exponentially with the number
of iterations. This bound is derived as follows. For i = 1, . . . , t, let Xi

be a random variable representing the outcome of the ith iteration of A;
more precisely, Xi = 1 if A(x) 6= f(x) on the ith iteration, and Xi = 0
otherwise. Let εx be the probability that A(x) 6= f(x). The probability that
the majority output is wrong is equal to the probability that the sample

156 Probabilistic algorithms

mean of X1, . . . , Xt exceeds the mean εx by at least 1/2 − εx. Part (i) of
Theorem 6.13 says that this occurs with probability at most

exp
[
−(1/2− εx)2t

2(1− εx)

]
≤ exp

[
−(1/2− ε)2t

2

]
.

7.2.2 Strict polynomial time

If we have an algorithm A that runs in expected polynomial time, and which
approximately computes a function f , then we can easily turn it into a new
algorithm A′ that runs in strict polynomial time, and also approximates
f , as follows. Suppose that ε < 1/2 is a bound on the error probability,
and T (n) is a polynomial bound on the expected running time for inputs of
length n. Then A′ simply runs A for at most tT (n) steps, where t is any
constant chosen so that ε+ 1/t < 1/2—if A does not halt within this time
bound, then A′ simply halts with an arbitrary output. The probability that
A′ errs is at most the probability that A errs plus the probability that A
runs for more than tT (n) steps. By Markov’s inequality (Theorem 6.11),
the latter probability is at most 1/t, and hence A′ approximates f as well,
but with an error probability bounded by ε+ 1/t.

7.2.3 Language recognition

An important special case of approximately computing a function is when
the output of the function f is either 0 or 1 (or equivalently, false or true).
In this case, f may be viewed as the characteristic function of the language
L := {x : f(x) = 1}. (It is the tradition of computational complexity theory
to call sets of bit strings “languages.”) There are several “flavors” of proba-
bilistic algorithms for approximately computing the characteristic function
f of a language L that are traditionally considered — for the purposes of
these definitions, we may restrict ourselves to algorithms that output either
0 or 1:

• We call a probabilistic, expected polynomial-time algorithm an At-
lantic City algorithm for recognizing L if it approximately com-
putes f with error probability bounded by a constant ε < 1/2.

• We call a probabilistic, expected polynomial-time algorithm A a
Monte Carlo algorithm for recognizing L if for some constant
δ > 0, we have:

– for any x ∈ L, we have P[A(x) = 1] ≥ δ, and

– for any x /∈ L, we have P[A(x) = 1] = 0.

7.2 Approximation of functions 157

• We call a probabilistic, expected polynomial-time algorithm a Las
Vegas algorithm for recognizing L if it computes f correctly on all
inputs x.

One also says an Atlantic City algorithm has two-sided error, a Monte
Carlo algorithm has one-sided error, and a Las Vegas algorithm has zero-
sided error.

Exercise 7.6. Show that any language recognized by a Las Vegas algorithm
is also recognized by a Monte Carlo algorithm, and that any language rec-
ognized by a Monte Carlo algorithm is also recognized by an Atlantic City
algorithm.

Exercise 7.7. Show that if L is recognized by an Atlantic City algorithm
that runs in expected polynomial time, then it is recognized by an Atlantic
City algorithm that runs in strict polynomial time, and whose error proba-
bility is at most 2−n on inputs of length n.

Exercise 7.8. Show that if L is recognized by a Monte Carlo algorithm that
runs in expected polynomial time, then it is recognized by a Monte Carlo
algorithm that runs in strict polynomial time, and whose error probability
is at most 2−n on inputs of length n.

Exercise 7.9. Show that a language is recognized by a Las Vegas algo-
rithm iff the language and its complement are recognized by Monte Carlo
algorithms.

Exercise 7.10. Show that if L is recognized by a Las Vegas algorithm that
runs in strict polynomial time, then L may be recognized in deterministic
polynomial time.

Exercise 7.11. Suppose that for a given language L, there exists a prob-
abilistic algorithm A that runs in expected polynomial time, and always
outputs either 0 or 1. Further suppose that for some constants α and c,
where
• α is a rational number with 0 ≤ α < 1, and
• c is a positive integer,

and for all sufficiently large n, and all inputs x of length n, we have
• if x /∈ L, then P[A(x) = 1] ≤ α, and
• if x ∈ L, then P[A(x) = 1] ≥ α+ 1/nc.

(a) Show that there exists an Atlantic City algorithm for L.
(b) Show that if α = 0, then there exists a Monte Carlo algorithm for L.

158 Probabilistic algorithms

7.3 Flipping a coin until a head appears

In this and subsequent sections of this chapter, we discuss a number of
specific probabilistic algorithms.

Let us begin with the following simple algorithm (which was already pre-
sented in Example 7.1) that essentially flips a coin until a head appears:

repeat
b←R {0, 1}

until b = 1

Let X be a random variable that represents the number of loop iterations
made by the algorithm. It should be fairly clear that X has a geometric
distribution, where the associated probability of success is 1/2 (see Exam-
ple 6.30). However, let us derive this fact from more basic principles. Define
random variables B1, B2, . . . , where Bi represents the value of the bit as-
signed to b in the ith loop iteration, if X ≥ i, and ? otherwise. Clearly,
exactly one Bi will take the value 1, in which case X takes the value i.

Evidently, for each i ≥ 1, if the algorithm actually enters the ith loop
iteration, then Bi is uniformly distributed over {0, 1}, and otherwise, Bi = ?.
That is:

P[Bi = 0 | X ≥ i] = 1/2, P[Bi = 1 | X ≥ i] = 1/2,

P[Bi = ? | X < i] = 1.

From this, we see that

P[X ≥ 1] = 1, P[X ≥ 2] = P[B1 = 0 | X ≥ 1]P[X ≥ 1] = 1/2,

P[X ≥ 3] = P[B2 = 0 | X ≥ 2]P[X ≥ 2] = (1/2)(1/2) = 1/4,

and by induction on i, we see that

P[X ≥ i] = P[Bi−1 = 0 | X ≥ i− 1]P[X ≥ i− 1] = (1/2)(1/2i−2) = 1/2i−1,

from which it follows (see Exercise 6.54) that X has a geometric distribution
with associated success probability 1/2.

Now consider the expected value E[X]. By the discussion in Example 6.35,
we have E[X] = 2. If Y denotes the total running time of the algorithm,
then Y ≤ cX for some constant c, and hence

E[Y] ≤ cE[X] = 2c,

and we conclude that the expected running time of the algorithm is a con-
stant, the exact value of which depends on the details of the implementation.

7.4 Generating a random number from a given interval 159

[Readers who skipped §7.1.1 may also want to skip this paragraph.]
As was argued in Example 7.1, the above algorithm halts with prob-
ability 1. To make the above argument completely rigorous, we
should formally justify that claim that the conditional distribution
of Bi, given that X ≥ i, is uniform over {0, 1}. We do not wish to
assume that the values of the Bi are located at pre-determined posi-
tions of the execution path; rather, we shall employ a more generally
applicable technique. For any i ≥ 1, we shall condition on a partic-
ular partial execution path τ that drives the algorithm to the point
where it is just about to sample the bit Bi, and show that in this
conditional probability distribution, Bi is uniformly distributed over
{0, 1}. To do this rigorously in our formal framework, let us define
the event Aτ to be the event that τ is a prefix of the execution path.
If |τ | = `, then the events Aτ , Aτ ∧ (Bi = 0), and Aτ ∧ (Bi = 1) are
determined by the first `+1 bits of the execution path. We can then
consider corresponding events in a probabilistic experiment wherein
we observe the behavior of the algorithm on a random (`+1)-bit ex-
ecution path (see Exercise 7.2). In the latter experiment, it is clear
that the conditional probability distribution of Bi, given that the
first ` bits of the actual execution path σ agree with τ , is uniform
over {0, 1}, and thus, the same holds in the original probability dis-
tribution. Since this holds for all relevant τ , it follows (by a discrete
version of Exercise 6.13) that it holds conditioned on X ≥ i.

We have analyzed the above algorithm in excruciating detail. As we
proceed, many of these details will be suppressed, as they can all be handled
by very similar (and completely routine) arguments.

7.4 Generating a random number from a given interval

Suppose we want to generate a number n uniformly at random from the
interval {0, . . . ,M − 1}, for a given integer M ≥ 1.

If M is a power of 2, say M = 2k, then we can do this directly as follows:
generate a random k-bit string s, and convert s to the integer I(s) whose
base-2 representation is s; that is, if s = bk−1bk−2 · · · b0, where the bi are
bits, then

I(s) :=
k−1∑
i=0

bi2i.

In the general case, we do not have a direct way to do this, since we can
only directly generate random bits. However, suppose that M is a k-bit
number, so that 2k−1 ≤ M < 2k. Then the following algorithm does the
job:

160 Probabilistic algorithms

Algorithm RN:

repeat
s←R {0, 1}×k

n← I(s)
until n < M

output n

LetX denote the number of loop iterations of this algorithm, Y its running
time, and N its output.

In every loop iteration, n is uniformly distributed over {0, . . . , 2k−1}, and
the event n < M occurs with probability M/2k; moreover, conditioning on
the latter event, n is uniformly distributed over {0, . . . ,M − 1}. It follows
that X has a geometric distribution with an associated success probability
p := M/2k ≥ 1/2, and that N is uniformly distributed over {0, . . . ,M − 1}.
We have E[X] = 1/p ≤ 2 (see Example 6.35) and Y ≤ ckX for some
implementation-dependent constant c, from which it follows that

E[Y] ≤ ckE[X] ≤ 2ck.

Thus, the expected running time of Algorithm RN is O(k).
Hopefully, the above argument is clear and convincing. However, as in

the previous section, we can derive these results from more basic principles.
Define random variables N1, N2, . . . , where Ni represents the value of n in
the ith loop iteration, if X ≥ i, and ? otherwise.

Evidently, for each i ≥ 1, if the algorithm actually enters the ith loop
iteration, thenNi is uniformly distributed over {0, . . . , 2k−1}, and otherwise,
Ni = ?. That is:

P[Ni = j | X ≥ i] = 1/2k (j = 0, . . . , 2k − 1),

P[Ni = ? | X < i] = 1.

From this fact, we can derive all of the above results.
As for the distribution of X, it follows from a simple induction argument

that P[X ≥ i] = qi−1, where q := 1− p; indeed, P[X ≥ 1] = 1, and for i ≥ 2,
we have

P[X ≥ i] = P[Ni−1 ≥M | X ≥ i− 1]P[X ≥ i− 1] = q · qi−2 = qi−1.

It follows that X has a geometric distribution with associated success prob-
ability p (see Exercise 6.54).

As for the distribution of N , by (a discrete version of) Exercise 6.13, it
suffices to show that for all i ≥ 1, the conditional distribution of N given that

7.4 Generating a random number from a given interval 161

X = i is uniform on {0, . . . ,M − 1}. Observe that for any j = 0, . . . ,M − 1,
we have

P[N = j | X = i] =
P[N = j ∧X = i]

P[X = i]
=

P[Ni = j ∧X ≥ i]
P[Ni < M ∧X ≥ i]

=
P[Ni = j | X ≥ i]P[X ≥ i]
P[Ni < M | X ≥ i]P[X ≥ i]

=
1/2k

M/2k

= 1/M.

[Readers who skipped §7.1.1 may also want to skip this paragraph.]
To make the above argument completely rigorous, we should first
show that the algorithm halts with probability 1, and then show
that the conditional distribution of Ni, given that X ≥ i, is indeed
uniform on {0, . . . , 2k − 1}, as claimed above. That the algorithm
halts with probability 1 follows from the fact that in every loop iter-
ation, there is at least one choice of s that will cause the algorithm
to halt. To analyze the conditional distribution on Ni, one considers
various conditional distributions, conditioning on particular partial
execution paths τ that bring the computation just to the beginning
of the ith loop iteration; for any particular such τ , the ith loop iter-
ation will terminate in at most ` := |τ |+ ck steps, for some constant
c. Therefore, the conditional distribution of Ni, given the partial ex-
ecution path τ , can be analyzed by considering the execution of the
algorithm on a random `-bit execution path (see Exercise 7.2). It is
then clear that the conditional distribution of Ni given the partial
execution path τ is uniform over {0, . . . , 2k−1}, and since this holds
for all relevant τ , it follows (by a discrete version of Exercise 6.13)
that the conditional distribution of Ni, given that the ith loop is
entered, is uniform over {0, . . . , 2k − 1}.

Of course, by adding an appropriate value to the output of Algorithm
RN, we can generate random numbers uniformly in an interval {A, . . . , B},
for given A and B. In what follows, we shall denote the execution of this
algorithm as

n←R {A, . . . , B}.

We also mention the following alternative approach to generating a ran-
dom number from an interval. Given a positive k-bit integer M , and a
parameter t > 0, we do the following:

Algorithm RN′:

s←R {0, 1}×(k+t)

n← I(s) mod M
output n

Compared with Algorithm RN, Algorithm RN′ has the advantage that

162 Probabilistic algorithms

there are no loops — it halts in a bounded number of steps; however, it
has the disadvantage that its output is not uniformly distributed over the
interval {0, . . . ,M − 1}. Nevertheless, the statistical distance between its
output distribution and the uniform distribution on {0, . . . ,M − 1} is at
most 2−t (see Example 6.27 in §6.8). Thus, by choosing t suitably large, we
can make the output distribution “as good as uniform” for most practical
purposes.

Exercise 7.12. Prove that no probabilistic algorithm that always halts in
a bounded number of steps can have an output distribution that is uniform
on {0, . . . ,M − 1}, unless M is a power of 2.

Exercise 7.13. Let A1 and A2 be probabilistic algorithms such that, for
any input x, the random variables A1(x) and A2(x) take on one of a finite
number of values, and let δx be the statistical distance between A1(x) and
A2(x). Let B be any probabilistic algorithm that always outputs 0 or 1. For
for i = 1, 2, let Ci be the algorithm that given an input x, first runs Ai on
that input, obtaining a value y, then it runs B on input y, obtaining a value
z, which it then outputs. Show that |P[C1(x) = 1]− P[C2(x) = 1]| ≤ δx.

7.5 Generating a random prime

Suppose we are given an integer M ≥ 2, and want to generate a random
prime between 2 and M . One way to proceed is simply to generate random
numbers until we get a prime. This idea will work, assuming the existence
of an efficient algorithm IsPrime that determines whether or not a given
integer n > 1 is prime.

Now, the most naive method of testing if n is prime is to see if any of the
numbers between 2 and n− 1 divide n. Of course, one can be slightly more
clever, and only perform this divisibility check for prime numbers between 2
and
√
n (see Exercise 1.1). Nevertheless, such an approach does not give rise

to a polynomial-time algorithm. Indeed, the design and analysis of efficient
primality tests has been an active research area for many years. There is, in
fact, a deterministic, polynomial-time algorithm for testing primality, which
we shall discuss later, in Chapter 22. For the moment, we shall just assume
we have such an algorithm, and use it as a “black box.”

Our algorithm to generate a random prime between 2 and M runs as
follows:

7.5 Generating a random prime 163

Algorithm RP:

repeat
n←R {2, . . . ,M}

until IsPrime(n)
output n

We now wish to analyze the running time and output distribution of
Algorithm RP on input M . Let k := len(M).

First, consider a single iteration of the main loop of Algorithm RP, viewed
as a stand-alone probabilistic experiment. For any fixed prime p between
2 and M , the probability that the variable n takes the value p is precisely
1/(M − 1). Thus, every prime is equally likely, and the probability that n
is a prime is precisely π(M)/(M − 1).

Let us also consider the expected running time µ of a single loop iteration.
To this end, define Wn to be the running time of algorithm IsPrime on input
n. Also, define

W ′M :=
1

M − 1

M∑
n=2

Wn.

That is, W ′M is the average value of Wn, for a random choice of n ∈
{2, . . . ,M}. Thus, µ is equal to W ′M , plus the expected running time of
Algorithm RN, which is O(k), plus any other small overhead, which is also
O(k). So we have µ ≤ W ′M + O(k), and assuming that W ′M = Ω(k), which
is perfectly reasonable, we have µ = O(W ′M).

Next, let us consider the behavior of Algorithm RP as a whole. From the
above discussion, it follows that when this algorithm terminates, its output
will be uniformly distributed over the set of all primes between 2 and M . If
T denotes the number of loop iterations performed by the algorithm, then
E[T] = (M − 1)/π(M), which by Chebyshev’s theorem (Theorem 5.1) is
Θ(k).

So we have bounded the expected number of loop iterations. We now
want to bound the expected overall running time. For i ≥ 1, let Xi denote
the amount of time (possibly zero) spent during the ith loop iteration of the
algorithm, so that X :=

∑
i≥1Xi is the total running time of Algorithm RP.

Note that

E[Xi] = E[Xi | T ≥ i]P[T ≥ i] + E[Xi | T < i]P[T < i]

= E[Xi | T ≥ i]P[T ≥ i]
= µP[T ≥ i],

164 Probabilistic algorithms

because Xi = 0 when T < i and E[Xi | T ≥ i] is by definition equal to µ.
Then we have

E[X] =
∑
i≥1

E[Xi] = µ
∑
i≥1

P[T ≥ i] = µE[T] = O(kW ′M).

7.5.1 Using a probabilistic primality test

In the above analysis, we assumed that IsPrime was a deterministic,
polynomial-time algorithm. While such an algorithm exists, there are in
fact simpler and more efficient algorithms that are probabilistic. We shall
discuss such an algorithm in greater depth later, in Chapter 10. This al-
gorithm (like several other algorithms for primality testing) has one-sided
error in the following sense: if the input n is prime, then the algorithm
always outputs true; otherwise, if n is composite, the output may be true
or false, but the probability that the output is true is at most c, where
c < 1 is a constant. In the terminology of §7.2, such an algorithm is essen-
tially a Monte Carlo algorithm for the language of composite numbers. If
we want to reduce the error probability for composite inputs to some very
small value ε, we can iterate the algorithm t times, with t chosen so that
ct ≤ ε, outputting true if all iterations output true, and outputting false
otherwise. This yields an algorithm for primality testing that makes errors
only on composite inputs, and then only with probability at most ε.

Let us analyze the behavior of Algorithm RP under the assumption that
IsPrime is implemented by a probabilistic algorithm (such as described
in the previous paragraph) with an error probability for composite inputs
bounded by ε. Let us define Wn to be the expected running time of IsPrime
on input n, and as before, we define

W ′M :=
1

M − 1

M∑
n=2

Wn.

Thus, W ′M is the expected running time of algorithm IsPrime, where the
average is taken with respect to randomly chosen n and the random choices
of the algorithm itself.

Consider a single loop iteration of Algorithm RP. For any fixed prime p
between 2 and M , the probability that n takes the value p is 1/(M − 1).
Thus, if the algorithm halts with a prime, every prime is equally likely. Now,
the algorithm will halt if n is prime, or if n is composite and the primality
test makes a mistake; therefore, the the probability that it halts at all is at
least π(M)/(M − 1). So we see that the expected number of loop iterations

7.5 Generating a random prime 165

should be no more than in the case where we use a deterministic primality
test. Using the same argument as was used before to estimate the expected
total running time of Algorithm RP, we find that this is O(kW ′M).

As for the probability that Algorithm RP mistakenly outputs a composite,
one might be tempted to say that this probability is at most ε, the probability
that IsPrime makes a mistake. However, in drawing such a conclusion, we
would be committing the fallacy of Example 6.12—to correctly analyze the
probability that Algorithm RP mistakenly outputs a composite, one must
take into account the rate of incidence of the “primality disease,” as well as
the error rate of the test for this disease.

Let us be a bit more precise. Again, consider the probability distribution
defined by a single loop iteration, and let A be the event that IsPrime
outputs true, and B the event that n is composite. Let β := P[B] and
α := P[A | B]. First, observe that, by definition, α ≤ ε. Now, the probability
δ that the algorithm halts and outputs a composite in this loop iteration is

δ = P[A ∧ B] = αβ.

The probability δ′ that the algorithm halts and outputs either a prime or
composite is

δ′ = P[A] = P[A ∧ B] + P[A ∧ B] = P[A ∧ B] + P[B] = αβ + (1− β).

Now consider the behavior of Algorithm RP as a whole. With T being
the number of loop iterations as before, we have

E[T] =
1
δ′

=
1

αβ + (1− β)
, (7.1)

and hence

E[T] ≤ 1
(1− β)

=
M − 1
π(M)

= O(k).

Let us now consider the probability γ that the output of Algorithm RP
is composite. For i ≥ 1, let Ci be the event that the algorithm halts and
outputs a composite number in the ith loop iteration. The events Ci are
pairwise disjoint, and moreover,

P[Ci] = P[Ci ∧ T ≥ i] = P[Ci | T ≥ i]P[T ≥ i] = δP[T ≥ i].

So we have

γ =
∑
i≥1

P[Ci] =
∑
i≥1

δP[T ≥ i] = δE[T] =
αβ

αβ + (1− β)
, (7.2)

166 Probabilistic algorithms

and hence

γ ≤ α

(1− β)
≤ ε

(1− β)
= ε

M − 1
π(M)

= O(kε).

Another way of analyzing the output distribution of Algorithm RP is to
consider its statistical distance ∆ from the uniform distribution on the set of
primes between 2 and M . As we have already argued, every prime between
2 and M is equally likely to be output, and in particular, any fixed prime p
is output with probability at most 1/π(M). It follows from Theorem 6.15
that ∆ = γ.

7.5.2 Generating a random k-bit prime

Instead of generating a random prime between 2 and M , we may instead
want to generate a random k-bit prime, that is, a prime between 2k−1 and
2k − 1. Bertrand’s postulate (Theorem 5.7) tells us that there exist such
primes for every k ≥ 2, and that in fact, there are Ω(2k/k) such primes.
Because of this, we can modify Algorithm RP, so that each candidate n

is chosen at random from the interval {2k−1, . . . , 2k − 1}, and all of the
results of this section carry over essentially without change. In particular,
the expected number of trials until the algorithm halts is O(k), and if a
probabilistic primality test as in §7.5.1 is used, with an error probability of
ε, the probability that the output is not prime is O(kε).

Exercise 7.14. Design and analyze an efficient probabilistic algorithm that
takes as input an integer M ≥ 2, and outputs a random element of Z∗M .

Exercise 7.15. Suppose Algorithm RP is implemented using an imper-
fect random number generator, so that the statistical distance between the
output distribution of the random number generator and the uniform dis-
tribution on {2, . . . ,M} is equal to δ (e.g., Algorithm RN′ in §7.4). Assume
that 2δ < π(M)/(M − 1). Also, let λ denote the expected number of itera-
tions of the main loop of Algorithm RP, let ∆ denote the statistical distance
between its output distribution and the uniform distribution on the primes
up to M , and let k := len(M).

(a) Assuming the primality test is deterministic, show that λ = O(k) and
∆ = O(δk).

(b) Assuming the primality test is probabilistic, with one-sided error ε,
as in §7.5.1, show that λ = O(k) and ∆ = O((δ + ε)k).

7.6 Generating a random non-increasing sequence 167

Exercise 7.16. Analyze Algorithm RP assuming that the primality test
is implemented by an “Atlantic City” algorithm with error probability at
most ε.

Exercise 7.17. Consider the following probabilistic algorithm that takes as
input a positive integer M :

S ← ∅
repeat

n←R {1, . . . ,M}
S ← S ∪ {n}

until |S| = M

Show that the expected number of iterations of the main loop is ∼M logM .

The following exercises assume the reader has studied §7.1.1.

Exercise 7.18. Consider the following algorithm (which takes no input):

j ← 1
repeat

j ← j + 1
n←R {0, . . . , j − 1}

until n = 0

Show that this algorithm halts with probability 1, but that its expected
running time does not exist. (Compare this algorithm with the one in Ex-
ample 7.2, which does not even halt with probability 1.)

Exercise 7.19. Now consider the following modification to the algorithm
in the previous exercise:

j ← 2
repeat

j ← j + 1
n←R {0, . . . , j − 1}

until n = 0 or n = 1

Show that this algorithm halts with probability 1, and that its expected
running time exists (and is equal to some implementation-dependent con-
stant).

7.6 Generating a random non-increasing sequence

The following algorithm, Algorithm RS, will be used in the next section as
a fundamental subroutine in a beautiful algorithm (Algorithm RFN) that

168 Probabilistic algorithms

generates random numbers in factored form. Algorithm RS takes as input
an integer M ≥ 2, and runs as follows:

Algorithm RS:

n0 ←M

i← 0
repeat

i← i+ 1
ni ←R {1, . . . , ni−1}

until ni = 1
t← i

Output (n1, . . . , nt)

We analyze first the output distribution, and then the running time.

7.6.1 Analysis of the output distribution

Let N1, N2, . . . be random variables denoting the choices of n1, n2, . . . (for
completeness, define Ni := 1 if loop i is never entered).

A particular output of the algorithm is a non-increasing chain (n1, . . . , nt),
where n1 ≥ n2 ≥ · · · ≥ nt−1 > nt = 1. For any such chain, we have

P[N1 = n1 ∧ · · · ∧Nt = nt] = P[N1 = n1]P[N2 = n2 | N1 = n1] · · ·
P[Nt = nt | N1 = n1 ∧ · · · ∧Nt−1 = nt−1]

=
1
M
· 1
n1
· · · · · 1

nt−1
. (7.3)

This completely describes the output distribution, in the sense that we
have determined the probability with which each non-increasing chain ap-
pears as an output. However, there is another way to characterize the output
distribution that is significantly more useful. For j = 2, . . . ,M , define the
random variable Ej to be the number of occurrences of j among the Ni.
The Ej determine the Ni, and vice versa. Indeed, EM = eM , . . . , E2 = e2

iff the output of the algorithm is the non-increasing chain

(M, . . . ,M︸ ︷︷ ︸
eM times

,M − 1, . . . ,M − 1︸ ︷︷ ︸
eM−1 times

, . . . , 2, . . . , 2︸ ︷︷ ︸
e2 times

, 1).

From (7.3), we can therefore directly compute

P[EM = eM ∧ . . . ∧ E2 = e2] =
1
M

M∏
j=2

1
jej

. (7.4)

7.6 Generating a random non-increasing sequence 169

Notice that we can write 1/M as a telescoping product:

1
M

=
M − 1
M

· M − 2
M − 1

· · · · · 2
3
· 1

2
=

M∏
j=2

(1− 1/j),

so we can re-write (7.4) as

P[EM = eM ∧ · · · ∧ E2 = e2] =
M∏

j=2

j−ej (1− 1/j). (7.5)

Notice that for j = 2, . . . ,M ,∑
ej≥0

j−ej (1− 1/j) = 1,

and so by (a discrete version of) Theorem 6.1, the variables Ej are mutually
independent, and for all j = 2, . . . ,M and integers ej ≥ 0, we have

P[Ej = ej] = j−ej (1− 1/j). (7.6)

In summary, we have shown that the variables Ej are mutually indepen-
dent, where for j = 2, . . . ,M , the variable Ej+1 has a geometric distribution
with an associated success probability of 1− 1/j.

Another, perhaps more intuitive, analysis of the joint distribution of the
Ej runs as follows. Conditioning on the event EM = eM , . . . , Ej+1 = ej+1,
one sees that the value of Ej is the number of times the value j appears in
the sequence Ni, Ni+1, . . . , where i = eM + · · ·+ ej+1 + 1; moreover, in this
conditional probability distribution, it is not too hard to convince oneself
that Ni is uniformly distributed over {1, . . . , j}. Hence the probability that
Ej = ej in this conditional probability distribution is the probability of
getting a run of exactly ej copies of the value j in an experiment in which
we successively choose numbers between 1 and j at random, and this latter
probability is clearly j−ej (1− 1/j).

7.6.2 Analysis of the running time

Let T be the random variable that takes the value t when the output is
(n1, . . . , nt). Clearly, it is the value of T that essentially determines the
running time of the algorithm.

With the random variables Ej defined as above, we see that T = 1 +∑M
j=2Ej . Moreover, for each j, Ej + 1 has a geometric distribution with

170 Probabilistic algorithms

associated success probability 1− 1/j, and hence

E[Ej] =
1

1− 1/j
− 1 =

1
j − 1

.

Thus,

E[T] = 1 +
M∑

j=2

E[Ej] = 1 +
M−1∑
j=1

1
j

=
∫ M

1

dy

y
+O(1) ∼ logM.

Intuitively, this is roughly as we would expect, since with probability 1/2,
each successive ni is at most one half as large as its predecessor, and so after
O(len(M)) steps, we expect to reach 1.

To complete the running time analysis, let us consider the total number
of times X that the main loop of Algorithm RN in §7.4 is executed. For
i = 1, 2, . . . , let Xi denote the number of times that loop is executed in the
ith loop of Algorithm RS, defining this to be zero if the ith loop is never
reached. So X =

∑∞
i=1Xi. Arguing just as in §7.5, we have

E[X] =
∑
i≥1

E[Xi] ≤ 2
∑
i≥1

P[T ≥ i] = 2E[T] ∼ 2 logM.

To finish, if Y denotes the running time of Algorithm RS on input M ,
then we have Y ≤ c len(M)(X + 1) for some constant c, and hence E[Y] =
O(len(M)2).

Exercise 7.20. Show that when Algorithm RS runs on input M , the ex-
pected number of (not necessarily distinct) primes in the output sequence
is ∼ log logM .

Exercise 7.21. For j = 2, . . . ,M , let Fj := 1 if j appears in the output
of Algorithm RS on input M , and let Fj := 0 otherwise. Determine the
joint distribution of the Fj . Using this, show that the expected number of
distinct primes appearing in the output sequence is ∼ log logM .

7.7 Generating a random factored number

We now present an efficient algorithm that generates a random factored
number. That is, on input M ≥ 2, the algorithm generates a number r
uniformly distributed over the interval {1, . . . ,M}, but instead of the usual
output format for such a number r, the output consists of the prime factor-
ization of r.

As far as anyone knows, there are no efficient algorithms for factoring large

7.7 Generating a random factored number 171

numbers, despite years of active research in search of such an algorithm.
So our algorithm to generate a random factored number will not work by
generating a random number and then factoring it.

Our algorithm will use Algorithm RS in §7.6 as a subroutine. In addi-
tion, as we did in §7.5, we shall assume the existence of a deterministic,
polynomial-time primality test IsPrime. We denote its running time on
input n by Wn, and set W ∗M := max{Wn : n = 2, . . . ,M}.

In the analysis of the algorithm, we shall make use of Mertens’ theorem,
which we proved in Chapter 5 (Theorem 5.13).

On input M ≥ 2, the algorithm to generate a random factored number
r ∈ {1, . . . ,M} runs as follows:

Algorithm RFN:

repeat
Run Algorithm RS on input M , obtaining (n1, . . . , nt)

(∗) Let ni1 , . . . , ni` be the primes among n1, . . . , nt,
including duplicates

(∗∗) Set r ←
∏`

j=1 nij

If r ≤M then
s←R {1, . . . ,M}
if s ≤ r then output ni1 , . . . , ni` and halt

forever

Notes:

(∗) For i = 1, . . . , t−1, the number ni is tested for primality
algorithm IsPrime.

(∗∗) We assume that the product is computed by a simple
iterative procedure that halts as soon as the partial
product exceeds M . This ensures that the time spent
forming the product is always O(len(M)2), which sim-
plifies the analysis.

Let us now analyze the running time and output distribution of Algorithm
RFN on input M . Let k := len(M).

To analyze this algorithm, let us first consider a single iteration of the
main loop as a random experiment in isolation. Let n = 1, . . . ,M be a fixed
integer, and let us calculate the probability that the variable r takes the
particular value n in this loop iteration. Let n =

∏
p≤M pep be the prime

factorization of n. Then r takes the value n iff Ep = ep for all primes p ≤M ,

172 Probabilistic algorithms

which by the analysis in §7.6, happens with probability precisely∏
p≤M

p−ep(1− 1/p) =
U(M)
n

,

where

U(M) :=
∏

p≤M

(1− 1/p).

Now, the probability that this loop iteration produces n as output is equal
to the probability that r takes the value n and s ≤ n, which is

U(M)
n
· n
M

=
U(M)
M

.

Thus, every n is equally likely, and summing over all n = 1, . . . ,M , we
see that the probability that this loop iteration succeeds in producing some
output is U(M).

Now consider the expected running time of this loop iteration. From the
analysis in §7.6, it is easy to see that this is O(kW ∗M). That completes the
analysis of a single loop iteration.

Finally, consider the behavior of Algorithm RFN as a whole. From our
analysis of an individual loop iteration, it is clear that the output distri-
bution of Algorithm RFN is as required, and if H denotes the number of
loop iterations of the algorithm, then E[H] = U(M)−1, which by Mertens’
theorem is O(k). Since the expected running time of each individual loop
iteration is O(kW ∗M), it follows that the expected total running time is
O(k2W ∗M).

7.7.1 Using a probabilistic primality test (∗)
Analogous to the discussion in §7.5.1, we can analyze the behavior of Algo-
rithm RFN under the assumption that IsPrime is a probabilistic algorithm
which may erroneously indicate that a composite number is prime with
probability bounded by ε. Here, we assume that Wn denotes the expected
running time of the primality test on input n, and set W ∗M := max{Wn :
n = 2, . . . ,M}.

The situation here is a bit more complicated than in the case of Algorithm
RP, since an erroneous output of the primality test in Algorithm RFN could
lead either to the algorithm halting prematurely (with a wrong output),
or to the algorithm being delayed (because an opportunity to halt may be
missed).

Let us first analyze in detail the behavior of a single iteration of the main

7.7 Generating a random factored number 173

loop of Algorithm RFN. Let A denote the event that the primality test
makes a mistake in this loop iteration, and let δ := P[A]. If T is the number
of loop iterations in a given run of Algorithm RS, it is easy to see that

δ ≤ εE[T] = ε `(M),

where

`(M) := 1 +
M−1∑
j=1

1
j
≤ 2 + logM.

Now, let n = 1, . . . ,M be a fixed integer, and let us calculate the probability
αn that the correct prime factorization of n is output in this loop iteration.
Let Bn be the event that the primes among the output of Algorithm RS
multiply out to n. Then αn = P[Bn ∧ A](n/M). Moreover, because of
the mutual independence of the Ej , not only does it follow that P[Bn] =
U(M)/n, but it also follows that Bn and A are independent events: to see
this, note that Bn is determined by the variables {Ej : j prime}, and A is
determined by the variables {Ej : j composite} and the random choices of
the primality test. Hence,

αn =
U(M)
M

(1− δ).

Thus, every n is equally likely to be output. If C is the event that the
algorithm halts with some output (correct or not) in this loop iteration,
then

P[C] ≥ U(M)(1− δ), (7.7)

and

P[C ∨ A] = U(M)(1− δ) + δ = U(M)− δU(M) + δ ≥ U(M). (7.8)

The expected running time of a single loop iteration of Algorithm RFN is
also easily seen to be O(kW ∗M). That completes the analysis of a single loop
iteration.

We next analyze the total running time of Algorithm RFN. If H is the
number of loop iterations of Algorithm RFN, it follows from (7.7) that

E[H] ≤ 1
U(M)(1− δ)

,

and assuming that ε`(M) ≤ 1/2, it follows that the expected running time
of Algorithm RFN is O(k2W ∗M).

Finally, we analyze the statistical distance ∆ between the output distri-
bution of Algorithm RFN and the uniform distribution on the numbers 1

174 Probabilistic algorithms

to M , in correct factored form. Let H ′ denote the first loop iteration i for
which the event C ∨ A occurs, meaning that the algorithm either halts or
the primality test makes a mistake. Then, by (7.8), H ′ has a geometric
distribution with an associated success probability of at least U(M). Let Ai

be the event that the primality makes a mistake for the first time in loop
iteration i, and let A∗ is the event that the primality test makes a mistake in
any loop iteration. Observe that P[Ai | H ′ ≥ i] = δ and P[Ai | H ′ < i] = 0,
and so

P[Ai] = P[Ai | H ′ ≥ i]P[H ′ ≥ i] = δP[H ′ ≥ i],

from which it follows that

P[A∗] =
∑
i≥1

P[Ai] =
∑
i≥1

δP[H ′ ≥ i] = δE[H ′] ≤ δU(M)−1.

Now, if γ is the probability that the output of Algorithm RFN is not in
correct factored form, then

γ ≤ P[A∗] = δU(M)−1 = O(k2ε).

We have already argued that each value n between 1 and M , in correct
factored form, is equally likely to be output, and in particular, each such
value occurs with probability at most 1/M . It follows from Theorem 6.15
that ∆ = γ (verify).

Exercise 7.22. To simplify the analysis, we analyzed Algorithm RFN using
the worst-case estimate W ∗M on the expected running time of the primality
test. Define

W+
M :=

M∑
j=2

Wj

j − 1
,

where Wn denotes the expected running time of a probabilistic implemen-
tation of IsPrime on input n. Show that the expected running time of
Algorithm RFN is O(kW+

M), assuming ε`(M) ≤ 1/2.

Exercise 7.23. Analyze Algorithm RFN assuming that the primality test
is implemented by an “Atlantic City” algorithm with error probability at
most ε.

7.8 The RSA cryptosystem

Algorithms for generating large primes, such as Algorithm RP in §7.5, have
numerous applications in cryptography. One of the most well known and

7.8 The RSA cryptosystem 175

important such applications is the RSA cryptosystem, named after its inven-
tors Rivest, Shamir, and Adleman. We give a brief overview of this system
here.

Suppose that Alice wants to send a secret message to Bob over an insecure
network. An adversary may be able to eavesdrop on the network, and so
sending the message “in the clear” is not an option. Using older, more
traditional cryptographic techniques would require that Alice and Bob share
a secret key between them; however, this creates the problem of securely
generating such a shared secret. The RSA cryptosystem is an example
of a “public key” cryptosystem. To use the system, Bob simply places a
“public key” in the equivalent of an electronic telephone book, while keeping
a corresponding “private key” secret. To send a secret message to Bob, Alice
obtains Bob’s public key from the telephone book, and uses this to encrypt
her message. Upon receipt of the encrypted message, Bob uses his secret
key to decrypt it, obtaining the original message.

Here is how the RSA cryptosystem works. To generate a public
key/private key pair, Bob generates two very large random primes p and
q. To be secure, p and q should be quite large—typically, they are chosen
to be around 512 bits in length. We require that p 6= q, but the probability
that two random 512-bit primes are equal is negligible, so this is hardly an
issue. Next, Bob computes n := pq. Bob also selects an integer e > 1 such
that gcd(e, φ(n)) = 1. Here, φ(n) = (p − 1)(q − 1). Finally, Bob computes
d := e−1 mod φ(n). The public key is the pair (n, e), and the private key is
the pair (n, d). The integer e is called the “encryption exponent” and d is
called the “decryption exponent.”

After Bob publishes his public key (n, e), Alice may send a secret message
to Bob as follows. Suppose that a message is encoded in some canonical
way as a number between 0 and n− 1—we can always interpret a bit string
of length less than len(n) as such a number. Thus, we may assume that
a message is an element α of Zn. To encrypt the message α, Alice simply
computes β := αe. The encrypted message is β. When Bob receives β, he
computes γ := βd, and interprets γ as a message. (Note that if Bob stores
the factorization of n, then he may speed up the decryption process using
the algorithm in Exercise 7.28 below.)

The most basic requirement of any encryption scheme is that decryption
should “undo” encryption. In this case, this means that for all α ∈ Zn, we
should have

(αe)d = α. (7.9)

If α ∈ Z∗n, then this is clearly the case, since we have ed = 1 + φ(n)k for

176 Probabilistic algorithms

some positive integer k, and hence by Euler’s theorem (Theorem 2.15), we
have

(αe)d = αed = α1+φ(n)k = α · αφ(n)k = α.

Even if α 6∈ Z∗n, equation (7.9) still holds. To see this, let α = [a]n, with
gcd(a, n) 6= 1. There are three possible cases. First, if a ≡ 0 (mod n), then
trivially, aed ≡ 0 (mod n). Second, if a ≡ 0 (mod p) but a 6≡ 0 (mod q),
then trivially aed ≡ 0 (mod p), and

aed ≡ a1+φ(n)k ≡ a · aφ(n)k ≡ a (mod q),

where the last congruence follows from the fact that φ(n)k is a multiple of
q − 1, which is a multiple of the multiplicative order of a modulo q (again
by Euler’s theorem). Thus, we have shown that aed ≡ a (mod p) and
aed ≡ a (mod q), from which it follows that aed ≡ a (mod n). The third
case, where a 6≡ 0 (mod p) and a ≡ 0 (mod q), is treated in the same way as
the second. Thus, we have shown that equation (7.9) holds for all α ∈ Zn.

Of course, the interesting question about the RSA cryptosystem is
whether or not it really is secure. Now, if an adversary, given only the
public key (n, e), were able to factor n, then he could easily compute the
decryption exponent d. It is widely believed that factoring n is computation-
ally infeasible, for sufficiently large n, and so this line of attack is ineffective,
barring a breakthrough in factorization algorithms. However, there may be
other possible lines of attack. For example, it is natural to ask whether one
can compute the decryption exponent without having to go to the trouble
of factoring n. It turns out that the answer to this question is no: if one
could compute the decryption exponent d, then ed− 1 would be a multiple
of φ(n), and as we shall see later in §10.6, given any multiple of φ(n), we
can easily factor n.

Thus, computing the encryption exponent is equivalent to factoring n, and
so this line of attack is also ineffective. But there still could be other lines
of attack. For example, even if we assume that factoring large numbers is
infeasible, this is not enough to guarantee that for a given encrypted message
β, the adversary is unable to compute βd (although nobody actually knows
how to do this without first factoring n).

The reader should be warned that the proper notion of security for an
encryption scheme is quite subtle, and a detailed discussion of this is well
beyond the scope of this text. Indeed, the simple version of RSA presented
here suffers from a number of security problems (because of this, actual im-
plementations of public-key encryption schemes based on RSA are somewhat
more complicated). We mention one such problem here (others are examined

7.8 The RSA cryptosystem 177

in some of the exercises below). Suppose an eavesdropping adversary knows
that Alice will send one of a few, known, candidate messages. For example,
an adversary may know that Alice’s message is either “let’s meet today” or
“let’s meet tomorrow.” In this case, the adversary can encrypt for himself
all of the candidate messages, intercept Alice’s actual encrypted message,
and then by simply comparing encryptions, the adversary can determine
which particular message Alice encrypted. This type of attack works simply
because the encryption algorithm is deterministic, and in fact, any deter-
ministic encryption algorithm will be vulnerable to this type of attack. To
avoid this type of attack, one must use a probabilistic encryption algorithm.
In the case of the RSA cryptosystem, this is often achieved by padding the
message with some random bits before encrypting it.

Exercise 7.24. Alice submits a bid to an auction, and so that other bidders
cannot see her bid, she encrypts it under the public key of the auction service.
Suppose that the auction service provides a public key for an RSA encryption
scheme, with a modulus n. Assume that bids are encoded simply as integers
between 0 and n − 1 prior to encryption. Also, assume that Alice submits
a bid that is a “round number,” which in this case means that her bid is a
number that is divisible by 10. Show how an eavesdropper can submit an
encryption of a bid that exceeds Alice’s bid by 10%, without even knowing
what Alice’s bid is. In particular, your attack should work even if the space
of possible bids is very large.

Exercise 7.25. To speed up RSA encryption, one may choose a very small
encryption exponent. This exercise develops a “small encryption exponent
attack” on RSA. Suppose Bob, Bill, and Betty have RSA public keys with
moduli n1, n2, and n3, and all three use encryption exponent 3. Assume
that n1, n2, n3 are pairwise relatively prime. Suppose that Alice sends an
encryption of the same message to Bob, Bill, and Betty — that is, Alice
encodes her message as an integer a, with 0 ≤ a < min{n1, n2, n3}, and
computes the three encrypted messages βi := [a3]ni , for i = 1, . . . , 3. Show
how to recover Alice’s message from these three encrypted messages.

Exercise 7.26. To speed up RSA decryption, one might choose a small de-
cryption exponent, and then derive the encryption exponent from this. This
exercise develops a “small decryption exponent attack” on RSA. Suppose
n = pq, where p and q are distinct primes with len(p) = len(q). Let d and e
be integers such that 1 < d < φ(n), 1 < e < φ(n), and de ≡ 1 (mod φ(n)).

178 Probabilistic algorithms

Further, assume that

4d < n1/4.

Show how to efficiently compute d, given n and e. Hint: since de ≡
1 (mod φ(n)), it follows that de = 1+kφ(n) for an integer k with 0 < k < d;
let r := kn − de, and show that |r| < n3/4; next, show how to recover d
(along with r and k) using Theorem 4.6.

Exercise 7.27. Suppose there is a probabilistic algorithm A that takes as
input an integer n of the form n = pq, where p and q are distinct primes. The
algorithm also takes as input an integer e > 1, with gcd(e, φ(n)) = 1, and
an element β ∈ Z∗n. It outputs either “failure,” or α ∈ Z∗n such that αe = β.
Furthermore, assume that A runs in strict polynomial time, and that for all
n and e of the above form, and for randomly chosen β ∈ Z∗n, A succeeds in
finding α as above with probability ε(n, e). Here, the probability is taken
over the random choice of β, as well as the random choices made during
the execution of A. Show how to use A to construct another probabilistic
algorithm A′ that takes as input n and e as above, as well as β ∈ Z∗n, runs
in expected polynomial time, and that satisfies the following property:

if ε(n, e) ≥ 0.001, then for all β ∈ Z∗n, A′ finds α ∈ Z∗n with
αe = β with probability at least 0.999.

The algorithm A′ in the above exercise is an example of what is called
a random self-reduction, that is, an algorithm that reduces the task of
solving an arbitrary instance of a given problem to that of solving a random
instance of the problem. Intuitively, the fact that a problem is random self-
reducible in this sense means that the problem is no harder in “the worst
case” than in “the average case.”

Exercise 7.28. This exercise develops an algorithm for speeding up RSA
decryption. Suppose that we are given two distinct `-bit primes, p and q, an
element β ∈ Zn, where n := pq, and an integer d, where 1 < d < φ(n). Using
the algorithm from Exercise 3.26, we can compute βd at a cost of essentially
2` squarings in Zn. Show how this can be improved, making use of the
factorization of n, so that the total cost is essentially that of ` squarings
in Zp and ` squarings in Zq, leading to a roughly four-fold speed-up in the
running time.

7.9 Notes 179

7.9 Notes

See Luby [59] for an exposition of the theory of pseudo-random bit genera-
tion.

Our approach in §7.1 to defining the probability distribution associated
with the execution of a probabilistic algorithm is a bit unusual (indeed, it is
a bit unusual among papers and textbooks on the subject to even bother to
formally define much of anything). There are alternative approaches. One
approach is to define the output distribution and expected running time of an
algorithm on a given input directly, using the identities in Exercise 7.4, and
avoid the construction of an underlying probability distribution. However,
without such a probability distribution, we would have very few tools at our
disposal to analyze the output distribution and running time of particular
algorithms. Another approach (which we dismissed with little justification
early on in §7.1) is to attempt to define a distribution that models an in-
finite random bit string. One way to do this is to identify an infinite bit
string with the real number in the unit interval [0, 1] obtained by interpret-
ing the bit string as a number written in base 2, and then use continuous
probability theory (which we have not developed here, but which is covered
in a standard undergraduate course on probability theory), applied to the
uniform distribution on [0, 1]. There are a couple of problems with this ap-
proach. First, the above identification of bit strings with numbers is not
quite one-to-one. Second, when one tries to define the notion of expected
running time, numerous technical problems arise; in particular, the usual
definition of an expected value in terms of an integral would require us to
integrate functions that are not Riemann integrable. To properly deal with
all of these issues, one would have to develop a good deal of measure theory
(σ-algebras, Lesbegue integration, and so on), at the level normally covered
in a graduate-level course on probability or measure theory.

The algorithm presented here for generating a random factored number is
due to Kalai [50], although the analysis presented here is a bit different, and
our analysis using a probabilistic primality test is new. Kalai’s algorithm is
significantly simpler, though less efficient than, an earlier algorithm due to
Bach [9], which uses an expected number of O(k) primality tests, as opposed
to the O(k2) primality tests used by Kalai’s algorithm.

The RSA cryptosystem was invented by Rivest, Shamir, and Adleman
[78]. There is a vast literature on cryptography. One starting point is
the book by Menezes, van Oorschot, and Vanstone [62]. The attack in
Exercise 7.26 is due to Wiener [104]; this attack was recently strengthened
by Boneh and Durfee [19].

